Fibrochondrogenesis in two embryonic stem cell lines: effects of differentiation timelines.
نویسندگان
چکیده
Human embryonic stem cells (hESCs) are an exciting cell source for fibrocartilage engineering. In this study, the effects of differentiation time and cell line, H9 versus BG01V, were examined. Embryoid bodies (EBs) were fibrochondrogenically differentiated for 1, 3, or 6 weeks and then used to engineer tissue constructs that were grown for an additional 4 weeks. Construct matrix was fibrocartilaginous, containing glycosaminoglycans (GAGs) and collagens I, II, and VI. A differentiation time of 3 or 6 weeks produced homogeneous constructs, with matrix composition varying greatly with cell line and differentiation time: from 2.6 to 17.4 microg of GAG per 10(6) cells and from 22.3 to 238.4 microg of collagen per 10(6) cells. Differentiation for 1 week resulted in small constructs with poor structural integrity that could not be mechanically tested. The compressive stiffness of the constructs obtained from EBs differentiated for 3 or 6 weeks did not vary significantly as a function of either differentiation time or cell line. In contrast, the tensile properties were markedly greater with the H9 cell line, 1,562-1,940 versus 32-80 kPa in the BG01V constructs. These results demonstrate the dramatic effects of hESC line and differentiation time on the biochemical and functional properties of tissue-engineered constructs and show progress in fibrocartilage tissue engineering with an exciting new cell source.
منابع مشابه
Effects of Mouse Strain on Establishment of Embryonic Stem Cell Lines
Purpose: Embryonic stem (ES) cells are derived from the inner cell mass of blastocysts with self-renewal and pluripotency characteristics. These cells have potential for studies of in vitro differentiation, gene function, etc. This study was, therefore, initiated to establish new ES lines and evaluate the effects of strain on ES cell production. Materials and Methods: 3-5 day blastocysts were ...
متن کاملComparison of Cell Viability and Embryoid Body Size of Two Embryonic Stem Cell Lines After Different Exposure Times to Bone Morphogenetic Protein 4
Background: Activation of bone morphogenetic protein 4 (BMP4) signaling pathway in embryonic stem (ES) cells plays an important role in controlling cell proliferation, differentiation, and apoptosis. Adverse effects of BMP4 occur in a time dependent manner; however, little is known about the effect of different time exposure of this growth factor on cell number in culture media. In this study, ...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملThe Validated Embryionic Stem Cell Test to Predict Embryotoxicityinvitro
Backgrounds: A straight-forward way to identify whether a drug or environmental chemical can be harmful to unborn baby is to evaluate its effect on laboratory animals. All invivo methods need large number of animal and are therefore time consuming and expensive. However, the thousands of chemicals in need of testing, to reduce the spending of live animals, an assortment of in vitro assays has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stem cells
دوره 26 2 شماره
صفحات -
تاریخ انتشار 2008